Line 176:
Line 176:
The correct way to measure orientation is to maintain a rotation matrix (or alternatively a quaternion) of the current orientation (relative to gravity), and update it each time you get a gyro reading. It will drift a little, so you should reset the matrix's pitch and roll (but not yaw) with the values from the accelerometers whenever the accelerometers and gyros indicate no movement. After significant rotation, you should reset the matrix's yaw to zero when the Wii Remote is pointing near the middle (horizontally) of the sensor bar.
The correct way to measure orientation is to maintain a rotation matrix (or alternatively a quaternion) of the current orientation (relative to gravity), and update it each time you get a gyro reading. It will drift a little, so you should reset the matrix's pitch and roll (but not yaw) with the values from the accelerometers whenever the accelerometers and gyros indicate no movement. After significant rotation, you should reset the matrix's yaw to zero when the Wii Remote is pointing near the middle (horizontally) of the sensor bar.
−
When not activated, the MotionPlus is detected by regular polling (every 8 seconds or so) of 0x(4)a600fe. Writing 0x55 to 0x4A400F0, then 0x00 to 0x4A400FB (the standard extension init, works fine even with no extension) re-activates the standard extension, if any, plugged into the MotionPlus pass-through port. The development version of the [[CWiid|CWiid driver]] currently implements this method (without automatic 8 second checks) on the [http://abstrakraft.org/cwiid/browser/branches/motionplus/ motionplus branch]. Additional information on MotionPlus workings and implementation requirements are at http://abstrakraft.org/cwiid/wiki/MotionPlus.
+
The combination of 3 linear accelerations with 3 angular rates allows what Nintendo refers to as 1:1 motion tracking, which is another way of saying 6DOF (degrees of freedom) over a short time. It's only valid over short times because of the integration involved to convert accelerations and rates into positions (input errors, when integrated, blow up over time).
The combination of 3 linear accelerations with 3 angular rates allows what Nintendo refers to as 1:1 motion tracking, which is another way of saying 6DOF (degrees of freedom) over a short time. It's only valid over short times because of the integration involved to convert accelerations and rates into positions (input errors, when integrated, blow up over time).