Hardware/AV Encoder
This is an old revision of this page, as edited by Eke (talk | contribs) at 18:25, 29 January 2010. It may differ significantly from the current revision. |
The A/V encoder is located on the underside of the Wii main board; it is communicated with via I2C.
See http://www.gc-linux.org/wiki/AVE-RVL for additional information.
Registers description
Here is a more complete description of the registers that can be modified by the software. This is heavily based on the analysis and disassemby of some original code, there is therefore still unknown features and the whole description should be subject to caution.
Register 00h
address | size | read/write | description |
---|---|---|---|
0x00 | 1 | W | A/V timings ? |
bit(s) | description |
---|---|
0 | 0 = default value, 1 for D-Terminal (?) |
Register 01h
address | size | read/write | description |
---|---|---|---|
0x01 | 1 | W | Video Output configuration |
bit(s) | description |
---|---|
5 | YUV output (0: disabled 1: enabled) |
0-1 | color encoding (0: NTSC, 1:MPAL, 2:PAL, 3:DEBUG ?) |
YUV output is typically enabled only when a composite video cable is connected.
Register 02h
address | size | read/write | description |
---|---|---|---|
0x02 | 1 | W | Vertical blanking interval (VBI) control ? |
bit(s) | description |
---|---|
2 | unknown (1: default value, 0 for D-Terminal ?) |
1 | unknown (1: default value, 0 for D-Terminal ?) |
0 | unknown (1: default value, 0 for D-Terminal ?) |
Register 03h
address | size | read/write | description |
---|---|---|---|
0x03 | 1 | W | Video Trap Filter control (composite video only ?) |
bit(s) | description |
---|---|
1 | 1: default value, 0: disabled ? |
Register 04h
address | size | read/write | description |
---|---|---|---|
0x04 | 1 | R/W | A/V output control |
bit(s) | description |
---|---|
1 | 1: enabled, 0: disabled |
A/V output is typically disabled during register initialization.
Registers 05h & 06h
address | size | read/write | description |
---|---|---|---|
0x05 | 2 | W | CGMS protection ? |
bit(s) | description |
---|---|
8-15 | unknown (0: default value) |
2-5 | unknown (0: default value) |
0-1 | unknown (0: default value) |
Registers 08h & 09h
address | size | read/write | description |
---|---|---|---|
0x08 | 2 | W | WSS (Widescreen signaling) ? |
bit(s) | description |
---|---|
11-13 | unknown (0: default value) |
8-10 | unknown (0: default value) |
4-7 | unknown (0: default value) |
0-3 | unknown (0: default value) |
Register 0Ah
address | size | read/write | description |
---|---|---|---|
0x0A | 1 | W | RGB color output control (overdrive ?) |
bit(s) | description |
---|---|
1-7 | unknown (1: default value) |
0 | 0: disabled, 1: enabled |
This is apparently only enabled in DEBUG mode.
Registers 10h - 30h
address | size | read/write | description |
---|---|---|---|
0x10-0x30 | 33 | r/W | Gamma correction coefficients |
bit(s) | description |
---|---|
0-263 | unknown |
Registers 40h - 59h
address | size | read/write | description |
---|---|---|---|
0x40-0x59 | 26 | r/W | Macrovision code |
bit(s) | description |
---|---|
0-207 | unknown |
Register 65h
address | size | read/write | description |
---|---|---|---|
0x65 | 1 | W | color DAC control (oversampling ?) |
bit(s) | description |
---|---|
0 | unknown (1: default value) |
Register 6Ah
address | size | read/write | description |
---|---|---|---|
0x6A | 1 | W | Unknown (CCSEL ?) |
bit(s) | description |
---|---|
0 | unknown (1: default value) |
Register 6Eh
address | size | read/write | description |
---|---|---|---|
0x6E | 1 | W | RGB output filter |
bit(s) | description |
---|---|
0 | 1:enabled, 0: disabled |
This is typically enabled when the video mode is set to EURGB60 (5).
Setting this to zero results in red saturated image when using RGB video cable.
Still need confirmation if this happens in 576i (PAL 50Hz) mode as well.
Maybe this is used to select between S-Video (NTSC) & RGB (PAL60) output when the video output is 60hz.
Registers 71h & 72h
address | size | read/write | description |
---|---|---|---|
0x71 | 2 | W | Audio stereo output control |
bit(s) | description |
---|---|
8-15 | right volume ? (default value is 0x8e, 0x71 for d-Terminal ?) |
0-7 | left volume ? (default value is 0x8e, 0x71 for d-Terminal ?) |
Registers 7Ah - 7Dh
address | size | read/write | description |
---|---|---|---|
0x7A | 4 | W | Closed Captioning control ? |
bit(s) | description |
---|---|
24-30 | unknown (0: default value) |
16-22 | unknown (0: default value) |
8-14 | unknown (0: default value) |
0-6 | unknown (0: default value) |
Sample Code
Here is some sample code to initialize the A/V encoder :)
/*
BootMii - a Free Software replacement for the Nintendo/BroadOn bootloader.
low-level video support for the BootMii UI
Copyright (C) 2008, 2009 Hector Martin "marcan" <marcan@marcansoft.com>
Copyright (C) 2009 Haxx Enterprises <bushing@gmail.com>
Copyright (c) 2009 Sven Peter <svenpeter@gmail.com>
# This code is licensed to you under the terms of the GNU GPL, version 2;
# see file COPYING or http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt
Some routines and initialization constants originally came from the
"GAMECUBE LOW LEVEL INFO" document and sourcecode released by Titanik
of Crazy Nation and the GC Linux project.
*/
#include "bootmii_ppc.h"
#include "video_low.h"
#include "string.h"
#include "hollywood.h"
#ifdef VI_DEBUG
#define VI_debug(f, arg...) printf("VI: " f, ##arg);
#else
#define VI_debug(f, arg...) while(0)
#endif
// hardcoded VI init states -- these were obtained by dumping the register space after it was configured by
a game in each mode
static const u16 VIDEO_Mode640X480NtsciYUV16[64] = {
0x0F06, 0x0001, 0x4769, 0x01AD, 0x02EA, 0x5140, 0x0003, 0x0018,
0x0002, 0x0019, 0x410C, 0x410C, 0x40ED, 0x40ED, 0x0043, 0x5A4E,
0x0000, 0x0000, 0x0043, 0x5A4E, 0x0000, 0x0000, 0x0000, 0x0000,
0x1107, 0x01AE, 0x1001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001,
0x0000, 0x0000, 0x0000, 0x0000, 0x2850, 0x0100, 0x1AE7, 0x71F0,
0x0DB4, 0xA574, 0x00C1, 0x188E, 0xC4C0, 0xCBE2, 0xFCEC, 0xDECF,
0x1313, 0x0F08, 0x0008, 0x0C0F, 0x00FF, 0x0000, 0x0000, 0x0000,
0x0280, 0x0000, 0x0000, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF};
static const u16 VIDEO_Mode640X480Pal50YUV16[64] = {
0x11F5, 0x0101, 0x4B6A, 0x01B0, 0x02F8, 0x5640, 0x0001, 0x0023,
0x0000, 0x0024, 0x4D2B, 0x4D6D, 0x4D8A, 0x4D4C, 0x0043, 0x5A4E,
0x0000, 0x0000, 0x0043, 0x5A4E, 0x0000, 0x0000, 0x013C, 0x0144,
0x1139, 0x01B1, 0x1001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001,
0x0000, 0x0000, 0x0000, 0x0000, 0x2850, 0x0100, 0x1AE7, 0x71F0,
0x0DB4, 0xA574, 0x00C1, 0x188E, 0xC4C0, 0xCBE2, 0xFCEC, 0xDECF,
0x1313, 0x0F08, 0x0008, 0x0C0F, 0x00FF, 0x0000, 0x0000, 0x0000,
0x0280, 0x0000, 0x0000, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF};
static const u16 VIDEO_Mode640X480Pal60YUV16[64] = {
0x0F06, 0x0001, 0x4769, 0x01AD, 0x02EA, 0x5140, 0x0003, 0x0018,
0x0002, 0x0019, 0x410C, 0x410C, 0x40ED, 0x40ED, 0x0043, 0x5A4E,
0x0000, 0x0000, 0x0043, 0x5A4E, 0x0000, 0x0000, 0x0005, 0x0176,
0x1107, 0x01AE, 0x1001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001,
0x0000, 0x0000, 0x0000, 0x0000, 0x2850, 0x0100, 0x1AE7, 0x71F0,
0x0DB4, 0xA574, 0x00C1, 0x188E, 0xC4C0, 0xCBE2, 0xFCEC, 0xDECF,
0x1313, 0x0F08, 0x0008, 0x0C0F, 0x00FF, 0x0000, 0x0000, 0x0000,
0x0280, 0x0000, 0x0000, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF};
static const u16 VIDEO_Mode640X480NtscpYUV16[64] = {
0x1E0C, 0x0005, 0x4769, 0x01AD, 0x02EA, 0x5140, 0x0006, 0x0030,
0x0006, 0x0030, 0x81D8, 0x81D8, 0x81D8, 0x81D8, 0x0015, 0x77A0,
0x0000, 0x0000, 0x0015, 0x77A0, 0x0000, 0x0000, 0x022A, 0x01D6,
0x120E, 0x0001, 0x1001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001,
0x0000, 0x0000, 0x0000, 0x0000, 0x2828, 0x0100, 0x1AE7, 0x71F0,
0x0DB4, 0xA574, 0x00C1, 0x188E, 0xC4C0, 0xCBE2, 0xFCEC, 0xDECF,
0x1313, 0x0F08, 0x0008, 0x0C0F, 0x00FF, 0x0000, 0x0001, 0x0001,
0x0280, 0x807A, 0x019C, 0x00FF, 0x00FF, 0x00FF, 0x00FF, 0x00FF};
static int video_mode;
void VIDEO_Init(int VideoMode)
{
u32 Counter=0;
const u16 *video_initstate=NULL;
VI_debug("Resetting VI...\n");
write16(R_VIDEO_STATUS1, 2);
udelay(2);
write16(R_VIDEO_STATUS1, 0);
VI_debug("VI reset...\n");
switch(VideoMode)
{
case VIDEO_640X480_NTSCi_YUV16:
video_initstate = VIDEO_Mode640X480NtsciYUV16;
break;
case VIDEO_640X480_PAL50_YUV16:
video_initstate = VIDEO_Mode640X480Pal50YUV16;
break;
case VIDEO_640X480_PAL60_YUV16:
video_initstate = VIDEO_Mode640X480Pal60YUV16;
break;
case VIDEO_640X480_NTSCp_YUV16:
video_initstate = VIDEO_Mode640X480NtscpYUV16;
break;
/* Use NTSC as default */
default:
VideoMode = VIDEO_640X480_NTSCi_YUV16;
video_initstate = VIDEO_Mode640X480NtsciYUV16;
break;
}
VI_debug("Configuring VI...\n");
for(Counter=0; Counter<64; Counter++)
{
if(Counter==1)
write16(MEM_VIDEO_BASE + 2*Counter, video_initstate[Counter] & 0xFFFE);
else
write16(MEM_VIDEO_BASE + 2*Counter, video_initstate[Counter]);
}
video_mode = VideoMode;
write16(R_VIDEO_STATUS1, video_initstate[1]);
#ifdef VI_DEBUG
VI_debug("VI dump:\n");
for(Counter=0; Counter<32; Counter++)
printf("%02x: %04x %04x,\n", Counter*4, read16(MEM_VIDEO_BASE + Counter*4),
read16(MEM_VIDEO_BASE + Counter*4+2));
printf("---\n");
#endif
}
void VIDEO_SetFrameBuffer(void *FrameBufferAddr)
{
u32 fb = virt_to_phys(FrameBufferAddr);
write32(R_VIDEO_FRAMEBUFFER_1, (fb >> 5) | 0x10000000);
if(video_mode != VIDEO_640X480_NTSCp_YUV16)
fb += 2 * 640; // 640 pixels == 1 line
write32(R_VIDEO_FRAMEBUFFER_2, (fb >> 5) | 0x10000000);
}
void VIDEO_WaitVSync(void)
{
while(read16(R_VIDEO_HALFLINE_1) >= 200);
while(read16(R_VIDEO_HALFLINE_1) < 200);
}
/* black out video (not reversible!) */
void VIDEO_BlackOut(void)
{
VIDEO_WaitVSync();
int active = read32(R_VIDEO_VTIMING) >> 4;
write32(R_VIDEO_PRB_ODD, read32(R_VIDEO_PRB_ODD) + ((active<<1)-2));
write32(R_VIDEO_PRB_EVEN, read32(R_VIDEO_PRB_EVEN) + ((active<<1)-2));
write32(R_VIDEO_PSB_ODD, read32(R_VIDEO_PSB_ODD) + 2);
write32(R_VIDEO_PSB_EVEN, read32(R_VIDEO_PSB_EVEN) + 2);
mask32(R_VIDEO_VTIMING, 0xfffffff0, 0);
}
//static vu16* const _viReg = (u16*)0xCC002000;
void VIDEO_Shutdown(void)
{
VIDEO_BlackOut();
write16(R_VIDEO_STATUS1, 0);
}
#define SLAVE_AVE 0xe0
static inline void aveSetDirection(u32 dir)
{
u32 val = (read32(HW_GPIO1BDIR)&~0x8000)|0x4000;
if(dir) val |= 0x8000;
write32(HW_GPIO1BDIR, val);
}
static inline void aveSetSCL(u32 scl)
{
u32 val = read32(HW_GPIO1BOUT)&~0x4000;
if(scl) val |= 0x4000;
write32(HW_GPIO1BOUT, val);
}
static inline void aveSetSDA(u32 sda)
{
u32 val = read32(HW_GPIO1BOUT)&~0x8000;
if(sda) val |= 0x8000;
write32(HW_GPIO1BOUT, val);
}
static inline u32 aveGetSDA()
{
if(read32(HW_GPIO1BIN)&0x8000)
return 1;
else
return 0;
}
static u32 __sendSlaveAddress(u8 addr)
{
u32 i;
aveSetSDA(0);
udelay(2);
aveSetSCL(0);
for(i=0;i<8;i++) {
if(addr&0x80) aveSetSDA(1);
else aveSetSDA(0);
udelay(2);
aveSetSCL(1);
udelay(2);
aveSetSCL(0);
addr <<= 1;
}
aveSetDirection(0);
udelay(2);
aveSetSCL(1);
udelay(2);
if(aveGetSDA()!=0) {
VI_debug("No ACK\n");
return 0;
}
aveSetSDA(0);
aveSetDirection(1);
aveSetSCL(0);
return 1;
}
static u32 __VISendI2CData(u8 addr,void *val,u32 len)
{
u8 c;
u32 i,j;
u32 ret;
VI_debug("I2C[%02x]:",addr);
for(i=0;i<len;i++)
VI_debug(" %02x", ((u8*)val)[i]);
VI_debug("\n");
aveSetDirection(1);
aveSetSCL(1);
aveSetSDA(1);
udelay(4);
ret = __sendSlaveAddress(addr);
if(ret==0) {
return 0;
}
aveSetDirection(1);
for(i=0;i<len;i++) {
c = ((u8*)val)[i];
for(j=0;j<8;j++) {
if(c&0x80) aveSetSDA(1);
else aveSetSDA(0);
udelay(2);
aveSetSCL(1);
udelay(2);
aveSetSCL(0);
c <<= 1;
}
aveSetDirection(0);
udelay(2);
aveSetSCL(1);
udelay(2);
if(aveGetSDA()!=0) {
VI_debug("No ACK\n");
return 0;
}
aveSetSDA(0);
aveSetDirection(1);
aveSetSCL(0);
}
aveSetDirection(1);
aveSetSDA(0);
udelay(2);
aveSetSDA(1);
return 1;
}
static void __VIWriteI2CRegister8(u8 reg, u8 data)
{
u8 buf[2];
buf[0] = reg;
buf[1] = data;
__VISendI2CData(SLAVE_AVE,buf,2);
udelay(2);
}
static void __VIWriteI2CRegister16(u8 reg, u16 data)
{
u8 buf[3];
buf[0] = reg;
buf[1] = data >> 8;
buf[2] = data & 0xFF;
__VISendI2CData(SLAVE_AVE,buf,3);
udelay(2);
}
static void __VIWriteI2CRegister32(u8 reg, u32 data)
{
u8 buf[5];
buf[0] = reg;
buf[1] = data >> 24;
buf[2] = (data >> 16) & 0xFF;
buf[3] = (data >> 8) & 0xFF;
buf[4] = data & 0xFF;
__VISendI2CData(SLAVE_AVE,buf,5);
udelay(2);
}
static void __VIWriteI2CRegisterBuf(u8 reg, int size, u8 *data)
{
u8 buf[0x100];
buf[0] = reg;
memcpy(&buf[1], data, size);
__VISendI2CData(SLAVE_AVE,buf,size+1);
udelay(2);
}
static void __VISetYUVSEL(u8 dtvstatus)
{
int vdacFlagRegion;
switch(video_mode) {
case VIDEO_640X480_NTSCi_YUV16:
case VIDEO_640X480_NTSCp_YUV16:
default:
vdacFlagRegion = 0;
break;
case VIDEO_640X480_PAL50_YUV16:
case VIDEO_640X480_PAL60_YUV16:
vdacFlagRegion = 2;
break;
}
__VIWriteI2CRegister8(0x01, (dtvstatus<<5) | (vdacFlagRegion&0x1f));
}
static void __VISetFilterEURGB60(u8 enable)
{
__VIWriteI2CRegister8(0x6e, enable);
}
void VISetupEncoder(void)
{
u8 macrobuf[0x1a];
u8 gamma[0x21] = {
0x10, 0x00, 0x10, 0x00, 0x10, 0x00, 0x10, 0x00,
0x10, 0x00, 0x10, 0x00, 0x10, 0x20, 0x40, 0x60,
0x80, 0xa0, 0xeb, 0x10, 0x00, 0x20, 0x00, 0x40,
0x00, 0x60, 0x00, 0x80, 0x00, 0xa0, 0x00, 0xeb,
0x00
};
u8 dtv;
//tv = VIDEO_GetCurrentTvMode();
dtv = read16(R_VIDEO_VISEL) & 1;
//oldDtvStatus = dtv;
// SetRevolutionModeSimple
VI_debug("DTV status: %d\n", dtv);
memset(macrobuf, 0, 0x1a);
__VIWriteI2CRegister8(0x6a, 1);
__VIWriteI2CRegister8(0x65, 1);
__VISetYUVSEL(dtv);
__VIWriteI2CRegister8(0x00, 0);
__VIWriteI2CRegister16(0x71, 0x8e8e);
__VIWriteI2CRegister8(0x02, 7);
__VIWriteI2CRegister16(0x05, 0x0000);
__VIWriteI2CRegister16(0x08, 0x0000);
__VIWriteI2CRegister32(0x7A, 0x00000000);
// Macrovision crap
__VIWriteI2CRegisterBuf(0x40, sizeof(macrobuf), macrobuf);
// Sometimes 1 in RGB mode? (reg 1 == 3)
__VIWriteI2CRegister8(0x0A, 0);
__VIWriteI2CRegister8(0x03, 1);
__VIWriteI2CRegisterBuf(0x10, sizeof(gamma), gamma);
__VIWriteI2CRegister8(0x04, 1);
__VIWriteI2CRegister32(0x7A, 0x00000000);
__VIWriteI2CRegister16(0x08, 0x0000);
__VIWriteI2CRegister8(0x03, 1);
//if(tv==VI_EURGB60) __VISetFilterEURGB60(1);
//else
__VISetFilterEURGB60(0);
//oldTvStatus = tv;
}